AQA Maths M2

Topic Questions from Papers

Centre of Mass

1 Particles of masses $8 \mathrm{~kg}, 4 \mathrm{~kg}, 7 \mathrm{~kg}$ and 11 kg are attached to the vertices A, B, C and D respectively of a light, rigid, rectangular framework $A B C D$.

In the framework, $C D=90 \mathrm{~cm}$ and $B C=60 \mathrm{~cm}$, as shown in the diagram.

(a) Show that the centre of mass of the system of particles is 33 cm from $A D$. (3 marks)
(b) Find the distance of the centre of mass of the system of particles from $A B$. (3 marks)
(c) The framework is freely suspended from the corner A and hangs in equilibrium. Find the angle, in degrees, between the downward vertical and the side $A B$.
(3 marks)
(Q2, June 2006)

2 A uniform T-shaped lamina is formed by rigidly joining two rectangles $A B C H$ and $D E F G$, as shown in the diagram.

(a) Show that the centre of mass of the lamina is 26 cm from the edge $A B$.
(b) Explain why the centre of mass of the lamina is 5 cm from the edge $G F$.
(c) The point X is on the edge $A B$ and is 7 cm from A, as shown in the diagram below.

The lamina is freely suspended from X and hangs in equilibrium.
Find the angle between the edge $A B$ and the vertical, giving your answer to the nearest degree.

3 A uniform lamina is in the shape of a rectangle $A B C D$ and a square $E F G H$, as shown in the diagram.

The length $A B$ is 20 cm , the length $B C$ is 30 cm , the length $D E$ is 5 cm and the length $E F$ is 10 cm .

The point P is the midpoint of $A B$ and the point Q is the midpoint of $H G$.

(a) Explain why the centre of mass of the lamina lies on $P Q$.
(b) Find the distance of the centre of mass of the lamina from $A B$.
(c) The lamina is freely suspended from A.

Find, to the nearest degree, the angle between $A D$ and the vertical when the lamina is in equilibrium.

4 Three particles are attached to a light rectangular lamina $O A B C$, which is fixed in a horizontal plane.

Take $O A$ and $O C$ as the x - and y-axes, as shown.
Particle P has mass 1 kg and is attached at the point $(25,10)$.
Particle Q has mass 4 kg and is attached at the point $(12,7)$.
Particle R has mass 5 kg and is attached at the point $(4,18)$.

Find the coordinates of the centre of mass of the three particles.

5 A uniform rectangular lamina $A B C D$ has a mass of 8 kg . The side $A B$ has length 20 cm , the side $B C$ has length 10 cm , and P is the mid-point of $A B$.

A uniform circular lamina, of mass 2 kg and radius 5 cm , is fixed to the rectangular lamina to form a sign. The centre of the circular lamina is 5 cm from each of $A B$ and $B C$, as shown in the diagram.

(a) Find the distance of the centre of mass of the sign from $A D$.
(b) Write down the distance of the centre of mass of the sign from $A B$.
(c) The sign is freely suspended from P.

Find the angle between $A D$ and the vertical when the sign is in equilibrium. (4 marks)
(d) Explain how you have used the fact that each lamina is uniform in your solution to this question.

6 A piece of modern art is modelled as a uniform lamina and three particles. The diagram shows the lamina, the three particles A, B and C, and the x - and y-axes.

The lamina, which is fixed in the $x-y$ plane, has mass 10 kg and its centre of mass is at the point $(12,9)$.

The three particles are attached to the lamina.
Particle A has mass 3 kg and is at the point $(15,6)$.
Particle B has mass 1 kg and is at the point $(7,14)$.
Particle C has mass 6 kg and is at the point $(8,7)$.
Find the coordinates of the centre of mass of the piece of modern art.

7 A uniform circular lamina, of radius 4 cm and mass 0.4 kg , has a centre O, and $A B$ is a diameter. To create a medal, a smaller uniform circular lamina, of radius 2 cm and mass 0.1 kg , is attached so that the centre of the smaller lamina is at the point A, as shown in the diagram.

(a) Explain why the centre of mass of the medal is on the line $A B$. (1 mark)
(b) Find the distance of the centre of mass of the medal from the point B.

8 A uniform rectangular lamina $A B C D$ has a mass of 5 kg . The side $A B$ has length 60 cm and the side $B C$ has length 30 cm . The points P, Q, R and S are the mid-points of the sides, as shown in the diagram below.

A uniform triangular lamina $S R D$, of mass 4 kg , is fixed to the rectangular lamina to form a shop sign. The centre of mass of the triangular lamina $S R D$ is 10 cm from the side $A D$ and 5 cm from the side $D C$.

(a) Find the distance of the centre of mass of the shop sign from $A D$.
(b) Find the distance of the centre of mass of the shop sign from $A B$.
(c) The shop sign is freely suspended from P.

Find the angle between $A B$ and the horizontal when the shop sign is in equilibrium.
(d) To ensure that the side $A B$ is horizontal when the shop sign is freely suspended from point P, a particle of mass $m \mathrm{~kg}$ is attached to the shop sign at point B.

Calculate m.
(e) Explain how you have used the fact that the rectangular lamina $A B C D$ is uniform in your solution to this question.
(1 mark)

The diagram shows four particles, A, B, C and D, which are fixed in a horizontal plane which contains the x - and y-axes, as shown.

Particle A has mass 2 kg and is attached at the point $(9,6)$.
Particle B has mass 3 kg and is attached at the point $(2,4)$.
Particle C has mass 8 kg and is attached at the point $(3,8)$.
Particle D has mass 7 kg and is attached at the point $(6,11)$.

Find the coordinates of the centre of mass of the four particles.

10 A uniform rectangular lamina $A B C D$, of mass 1.6 kg , has side $A B$ of length 12 cm and side $B C$ of length 8 cm .

To create a logo, a uniform circular lamina, of mass 0.4 kg , is attached. The centre of the circular lamina is at the point C, as shown in the diagram.

(a) Find the distance of the centre of mass of the logo:
(i) from the line $A B$;
(ii) from the line $A D$.
(b) The logo is suspended in equilibrium, with $A B$ horizontal, by two vertical strings.

One string is attached at the point A and the other string is attached at the point B.
Find the tension in each of the two strings.
(Q3, June 2012)

The diagram shows a uniform lamina which is in the shape of two identical rectangles $A X G H$ and $Y B C D$ and a square $X Y E F$, arranged as shown.

The length of $A X$ is 10 cm , the length of $X Y$ is 10 cm and the length of $A H$ is 30 cm .

(a) Explain why the centre of mass of the lamina is 15 cm from $A H$.
(b) Find the distance of the centre of mass of the lamina from $A B$.
(c) The lamina is freely suspended from the point H.

Find, to the nearest degree, the angle between $H G$ and the horizontal when the lamina is in equilibrium.

